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Environmental contaminants including
polychlorinated biphenyls (PCBs), dioxin
[2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD)], and polybrominated biphenyls;
metals such as lead, mercury, and cadmium;
and pesticides including hexachlorobenzene,
mirex, dieldrin, and dichlorodiphenyl-
trichloroethane (DDT) are widely spread
throughout the aquatic and the terrestrial
ecosystems (1,2). The persistence of such
chemicals in the environment, their bio-
accumulation in living organisms, and their
potential to induce adverse health effects,
including effects on the immune system,
cause concern to government regulators and
to the public at large. These concerns are
being addressed by several regulatory agencies
at the national and international levels (3–5).

Chemical-induced adverse effects have
been noted in a variety of life forms includ-
ing marine mammals (6), birds (7), and in
rodents and humans (8). Although a
number of systems can be affected by envi-
ronmental contaminants, experimental
animal data indicate that the immune sys-
tem is one of the most sensitive targets for
chemical-induced toxicity, especially for the
chlorinated compounds TCDD (9,10) and
PCBs (11–14). Effects on the immune sys-
tem include hematologic changes, a reduc-
tion in bone marrow cellularity, and thymic
and splenic atrophy, which correlate with
humoral and/or cell-mediated immunosup-
pression. Such effects may be manifested as
reduced resistance to microbial infection
(15), increased incidence of autoimmune
disorders (16), and compromised immune

surveillance mechanisms responsible for the
clearance of neoplastic cells (17). 

Chemical-induced immunotoxic effects
are investigated within the discipline of
immunotoxicology. This is presently accom-
plished with an array of validated immuno-
logic tests in experimental animal models.
Although immunotoxicology is a relatively
young discipline, it has generated a large data-
base in experimental animals (18). Data
derived from several of these studies have
been used in the assessment of potential risk
levels for human exposures (9,14). 

Risk assessment involves the process of
extrapolating from experimental animal data
to humans, and it considers several levels of
uncertainty, which are factored in the final
analysis (19). Ideally, the process of risk
assessment would be biologically more mean-
ingful if it were based on data derived from
humans known to be exposed to environ-
mental contaminants. Presently, such data
are scarce and limited in scope, as only a few
basic immunologic end points have been
investigated in occupationally exposed work-
ers or in cross-sectional studies of acciden-
tally exposed cohorts. To improve the
process of risk assessment, we need to enrich
the human database. This entails identifying
a number of clinically relevant immunologic
end points that can be easily incorporated
into well-designed epidemiologic studies.
This article focuses on a review of current
testing strategies and incorporates additional
immunologic end points that may be useful
in the investigation of potentially adverse
chemical-induced immunomodulation in

humans. Human data indicative of effects of
environmental contaminants on the immune
system are also discussed. 

Immunologic Markers of Effect

The immune system is structurally and
functionally complex (20). It consists of sev-
eral tissues and organs strategically positioned
throughout the body. Because of this com-
plexity, multiple immunologic end points
(markers of effect) must be examined before a
comprehensive evaluation of the potential
immunomodulatory effects of chemicals can
be established.

Immunologic markers of effect include
changes in several components of the immune
system, such as shifts in the distribution of
lymphocyte subpopulations and changes in
other tissues caused by immune-mediated dys-
function, for example, signs of kidney failure
caused by autoimmune kidney disease (21).
Consequently, the use of markers with a high
correlation to a particular immunotoxic end
point is valuable in the identification of the
presence of these health effects.

A number of testing schemes have been
proposed for assessing humans exposed to
immunotoxicants. These include a) a testing
scheme proposed by the World Health
Organization (WHO) for assessing immuno-
toxicity in all persons exposed to immunotox-
icants (18), b) a screening panel of assays
recommended by a working group organized
by the U.S. Centers for Disease Control and
Prevention and the Agency for Toxic
Substances and Disease Registry (18), c) a
2-tier approach proposed by a panel of scien-
tists convened by the U.S. National Academy
of Science (22), and d ) a more recent 3-tier
approach proposal for testing immune effects
on humans (23). Although a number of simi-
larities exist among the various proposals,
basic differences exist among all the proposed
schemes regarding the choice of immunologic
end points. Common to all the proposed
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schemes are tests for the routine examination
of hematologic parameters, including blood
counts and differential counts, phenotypic
analysis of leukocytes and lymphocyte subsets
by flow cytometry, quantification of total
serum immunoglobulin (Ig) levels, and
autoantibody titers (to rheumatoid factor, to
the nucleic acid DNA, to mitochondria, etc.).
In addition, proposals a and b include tests
for serum clinical chemistry, and proposals a
and c include tests for specific and nonspecific
immunity as well as tests for cellular immu-
nity. Last, proposals c and d include the
quantification of levels of cytokines (basal and
stimulated) in serum and in vitro activation
systems. The scheme proposed by the U.S.
National Academy of Science panel is by far
the most complete scheme, as it encompasses
all aspects of specific and nonspecific immu-
nity and, to a very limited degree, autoimmu-
nity and allergy. Unfortunately, none of the
existing human studies on adverse immuno-
logic effects of environmental contaminants
has used any of the proposed schemes in its
entirety. Consequently, the power of any sin-
gle scheme to predict chemical-induced
immunomodulation remains to be investi-
gated. To further assist researchers in deter-
mining the type of immunologic end point(s)
to be investigated in human epidemiologic
studies, we summarize in the following sec-
tions relevant information regarding a num-
ber of key immunoassays. Where possible, we
also present recent advances in this area. Lack
of space prohibits a detailed discussion of
immunologic methods. For such information
the reader is referred to the several excellent
publications on clinical immunology (18,24).
In addition, chemical-induced hypersensitiv-
ity reactions and the development of autoim-
munity in exposed individuals are two areas
that are of increasing concern to human pop-
ulations. However, both of these clinical enti-
ties have complex underlying mechanisms
and require specialized methodologies for a
proper diagnosis, both of which are exten-
sively reviewed by Bigazzi (16) and will not
be included in the present review.

General Parameters of the 
Immune System
Total white blood cell counts. Quantitative
and morphologic investigations of total white
blood cells (WBC) and differential counts of
peripheral blood (PB) are basic investigations
and have been included in most immunotoxi-
city studies. In experimental animal studies
WBC counts correlate poorly with functional
aspects of the immune system. Luster et al.
(25) reported a concordance of only 43%
between WBC counts and biologically rele-
vant in vivo functional immune defects.
However, in humans WBC counts have
proven useful in signaling clinically relevant

hematologic changes that may result in
clinically identifiable autoimmune disorders
of the blood cells, e.g., idiotypic thrombo-
cytopenia, and various forms of leukemia
(24,26). Both relative and absolute numbers
of WBC are quantified. However, the con-
sensus is that absolute numbers provide bio-
logically more relevant information, as the
use of percentages of cell types may mask
some cytopenias or excessive numbers of a
cell type, which would lead to falsely
high/low numbers of a particular cell (27).
The calculation of absolute counts takes into
consideration the total WBC count, the per-
centage of total lymphocytes, and the per-
centages of each subset as follows:

In addition to the well-documented age-
related fluctuations of WBC counts, several
factors that influence the immune system
may also cause fluctuations in the WBC
counts: a) age, b) race, c) sex, d ) pregnancy
status, e) stress, f ) coexistent disease or
infection including HIV, g) nutritional
status, h) lifestyle, i ) tobacco smoking, j )
certain medications, k) biologic response
modifiers, and l ) postoperative procedures
It is, therefore, necessary that repeated counts
of WBC be obtained over time. More impor-
tant, these counts should be compared to
normal age- and sex-matched control values
obtained at the same time points as the
experimental counts. Alternatively, the
experimental values can be compared with
existing historical control values (24).

Immunophenotyping of peripheral blood
lymphocytes. Immunophenotyping of PB
lymphocytes, using monoclonal antibodies
directed to cell-surface markers and flow
cytometric techniques, has become an impor-
tant tool in the diagnosis of hematologic and
immunologic disorders (27). In experimental
animals enumeration of T-lymphocyte sub-
populations was shown to be a sensitive end
point, with a concordance of 83% between
the number of T-cell subsets and biologically
relevant in vivo effects (25). In humans the
study of T-cell subsets has its clinical applica-
tion in the characterization of T- or B-cell
abnormalities, e.g., primary immune defi-
ciency, and acquired T-lymphocyte subpopu-
lation deficiencies, and in detecting atypical
cell markers in peripheral blood lymphocytes,
e.g., in many types of leukemia (24,26). As

with the total WBC counts, determination of
the various T-cell subsets and B cells should
be expressed both as percent of lymphocytes
and as absolute counts.

Immunophenotypic data in early
childhood should be interpreted with cau-
tion,  as during that period the immune sys-
tem undergoes much expansion and
maturation and is characterized by significant
variations in both percent and absolute val-
ues of lymphocyte subpopulations (28,29).
Thus, the observed immunologic immaturity
of the young may be responsible for the
reported increased susceptibility to infections
during the first 5 years of life (30).
Conversely, T-cell subsets in healthy adults
whose immune systems have reached matu-
rity are relatively stable (31,32). In adults the
mean week-to-week variation in lymphocyte
subpopulations measured over 13 weeks was
less than 5% (33). 

Because of the observed fluctuations in
T-cell subsets in children, it is important that
sequential analysis of experimental blood
samples be performed and that results be
compared with data derived from specific
age- and sex-matched control groups or with
valid historical control (normative) data.
Normative data are available for human fetal
and cord blood (34,35), for children (28),
and for adults (32).

End Points for Humoral Immunity
Total serum immunoglobulin levels.
Determination of total serum Ig levels (IgG,
IgM, IgA, and IgE) in experimental animals
has not proven useful, as significant effects
on immune function are required before any
effect on total serum Ig levels is observed.
For example, no effects on serum Ig levels
were observed in nonhuman primates
exposed to low levels of PCBs, although sig-
nificant effects were observed on the ability
of the same animals to respond to a foreign
antigen (12). Determination of Ig subclasses
(IgA1 and 2 and IgG1–4) was a better predic-
tor for immunotoxic effects of environmental
contaminants (36). IgG subclass deficiencies
have been associated with increased suscepti-
bility to infections in the human upper respi-
ratory tract, caused mainly by Haemophilus
influenzae and Streptococcus pneumoniae, the
development of allergy, asthma, and gastro-
intestinal disorders (37,38). In view of these
findings, the WHO/International Union Of
Immunological Societies (IUIS) working
group has published a series of draft reports
in which the determination of serum sub-
classes and the clinical interpretation of this
end point have been discussed extensively
(39,40). As with other parameters, Ig levels in
exposed populations should be compared
with levels in age- and sex-matched controls
or to existing historical data (41,42).
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Specific antibody levels to foreign antigens.
The immune system is endowed with a large
functional reserve capacity, and the changes in
WBC numbers or shifts in lymphocyte subsets
observed in many studies may not be accom-
panied by changes in immune function (17).
It is important, therefore, that the functional
capacity of the immune system be established.
In experimental animals the immune func-
tional capacity is evaluated using the various
infectivity models that have been validated
across several species (6,43). Results of such
infectivity models correlate strongly with
other immune function tests and are highly
predictive of chemical-induced immunosup-
pression (43). However, for safety and ethical
reasons, such an approach is not readily
applicable to human studies. For these reasons
human investigative studies are restricted to
monitoring the incidence of infections in
exposed and nonexposed human cohorts.
Alternatively, the study subjects can be chal-
lenged with foreign antigens, followed by the
determination of antigen-specific antibody
levels in serum collected prior to antigenic
challenge (baseline titers) and at weekly inter-
vals postimmunization. In experimental ani-
mals this approach has been highly predictive
of effects on humoral immunity (12,25,43). 

The response to an antigenic challenge
involves the sequential and tightly orches-
trated interactions of functionally competent
immune cells, including the macrophage/
monocyte (antigen-processing and -presenting
cells), and the activated T and B lympho-
cytes. Consequently, much information can
be derived from challenging the host with
foreign antigens. Clinically relevant informa-
tion includes the ability of the host to
respond to a foreign antigen (primary
response) and to establish memory (secondary
or anamnestic response). Establishing mem-
ory endows the host with the ability to
respond to a second insult by the same
antigen in a much shorter time relative to the
primary response. Analysis of pre- and post-
immunization levels of antigen-specific anti-
body levels in serum collected at weekly
intervals can also be used to study the cata-
bolic rate of the specific antibody and the
ability of the immune system to switch from
IgM to IgG isotypic class switching, both of
which influence the level of detectable
antibody to a given antigen (44). 

The effects of environmental contami-
nants on the primary humoral immune
response can be studied only when an anti-
gen has met certain basic criteria. First, the
antigen must be foreign to the host, i.e., no
previous encounter. Second, it must be
immunogenic. Finally, the levels of antigen
used for eliciting an antigenic response
should should not adversely affect the health
of the subject.

An antigen that fulfills all the above criteria
is bacteriophage phiX174. Injecting the subject
once with phiX174 will elicit a primary
response. A second injection 4 weeks later will
produce a strong anamnestic response. This
procedure allows for the determination of pri-
mary and anamnestic responses to the bacte-
riophage challenges and makes possible the
concurrent measuring of the rate of clearance
of the injected bacteriophage (45). Decreased
bacteriophage clearance has been shown to be
significantly delayed in immunodeficient
patients (45). Immunization with bacterio-
phage has been conducted by several groups in
different countries and has proven to be a
harmless procedure (44). 

Another potentially useful antigen is
keyhole lympet hemocyanin (KLH). KLH is
extracted from Metathura crenulata (keyhole
limpets) collected from the sea in the wild
(46). Both primary and anamnestic responses
to this antigen can be monitored in humans
(47,48). When this antigen is used to elicit a
primary response, one should be aware of the
possibility that humans may have been
exposed to cross-reactive immunogens in the
past, leading to detectable titers of natural
antibodies. The levels and classes of natural
antibodies can be measured prior to immu-
nization and must be considered when results
are interpreted. KLH, without the use of adju-
vants, has been used extensively in experimen-
tal animal studies to test the effects of
environmental chemicals on immune function
(49). Clinically defined adverse effects due to
KLH have not been reported in these studies. 

In addition to the above-described anti-
gens, the recombinant hepatitis B vaccine
preparation that is used widely for protecting
humans against hepatitis B infection may
also be a potentially useful antigen (50). Use
of such an antigen in immunotoxicity studies
is limited because more than one injection of
the antigen is required to obtain serocon-
version, and the rate of response to this anti-
gen diminishes with age (51). Furthermore,
adverse effects including severe pancytopenia
have been observed in humans vaccinated
with this antigen (52). Currently, this vac-
cine is being applied to a study designed to
evaluate the potential immunotoxic effects of
ozone in a large number of adults (53). Such
data will be helpful in ascertaining the use-
fulness of such a vaccine in determining
chemical-induced immunosuppression.

The anamnestic immune response can be
evaluated by determining serum antibody lev-
els to antigens that humans are commonly
vaccinated with, such as tetanus toxoid (TT)
and diphtheria (54). The levels of protective
antibody specific for these antigens in the
population vary with age. According to the
National Health and Nutrition Examination
Survey conducted from 1988 to 1991, 69.7%

of Americans ≥6 years of age had protective
levels of tetanus antibodies (>0.15 IU/mL)
(55). However, the rate decreased from
87.7% among those 6–11 years of age to
27.8% among those ≥70 years of age. Among
children 6–16 years of age, 82.2% had pro-
tective levels of tetanus antibodies (55). Thus,
it is important that baseline levels of anti-
bodies to a specific antigen be measured prior
to challenge regimes. 

Both the primary and anamnestic immune
responses are valuable for a comprehensive
evaluation of the intrinsic naive and memory
immune capacity of populations and should
be investigated whenever possible. As is the
case with other aspects of the immune system,
the response to an antigen is genetically
driven. This necessitates that a large number
of exposed and nonexposed subjects be used.

End Points for Cellular Immunity
Lymphocyte transformation (tritiated
thymidine incorporation). The ability of PB
leukocytes to proliferate in response to sev-
eral mitogens/antigens is tested using the
lymphocyte transformation (3H-thymidine
incorporation) assay (LT) (56). The LT assay
is considered an in vitro clinical correlate of
delayed-type hypersensitivity to recall anti-
gens. Several specific and nonspecific ligands
can be used in this assay (Table 1). Plant
mitogens such as phytohemagglutinin
(PHA), concanavalin A (Con A), and poke-
weed mitogen (PWM) and bacterial products
such as Salmonella typhimurium mitogen
(STM) and Staphylococcus aureus Cowan 1
(SAC) have been used (56). 

A useful extension of the LT assay is the
quantitative analysis of Igs in the supernatants
of cultured PB leukocytes with selected mito-
gens such as PWM, SAC, and STM or
S. paratyphi B (SPB). By carefully selecting
the set of mitogens, one can obtain valuable
information regarding the type of cell affected
by the chemical in question. Examples have
been cited where a patient’s PB leukocytes
responded with IgM and IgA production to
stimulation with PWM and S. aureus but
failed to respond to SPB mitogen. The induc-
tion of Ig secretion in vitro by PWM and
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Table 1. Substances used as stimulants in lymphocyte
transformation (3H-thymidine incorporation) assays.

Substance Cell type activated

PHA T lymphocytes
Con A T lymphocytes
PWM T-cell mitogen; B-cell mitogen

through the release of 
soluble factors by T cells

S. aureus entero- Potent T-cell mitogen
toxin A

SAC  B cell 
S. typhimurium B cell
Killed SPB B cell without T help
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S. aureus is believed to be T-cell dependent,
whereas SPB is believed to induce Ig synthesis
without T-cell help. In the example above,
two significant B-cell abnormalities are evi-
dent. First, it was not possible to stimulate
B cells without T-cell help. Second, even
when stimulated, the patient’s B cells failed to
produce IgG, pointing to a defect in the
isotypic switch to IgG (44).

Delayed-type hypersensitivity. Determi-
nation of the delayed-type hypersensitivity
response to recall antigens is a cost-effective
method used to assess cell-mediated immune
function in humans (56). The test involves
the intradermal injection of antigen(s) and
the measurement of erythema and induration
at the injection site, peaking in intensity at
24–48 hr. The reaction is a lymphocyte- and
macrophage-dependent delayed-type hyper-
sensitivity response. A variety of antigens have
been used, but the most practical for adult
testing is a multitest kit (Multitest-CMI;
Antigen Supply House, Northridge,
California, USA) manufactured by The
Institut Mérieux (Lyon, France). This kit
contains Candida albicans, Trichophyton men-
tagrophytes, Proteus mirabilis, tuberculin puri-
fied protein derivative (PPD), streptococcus
group C, diphtheria, TT, and a glycerin con-
trol. The multitest kit has been extensively
standardized in adults, for whom hypoergic
scores (2 standard deviations below the mean
of healthy adults of the same sex and age)
have been defined (57). Knicker et al. (58)
tested 402 healthy adults 17–92 years of age
and reported that only 0.5% were anergic to
all antigens, with the remaining 95% having
a reaction to one or more of the antigens
tested. A review of all published data on
delayed hypersensitivity response (DHR) in
healthy adults was undertaken by Buckley
(59). Results of such a review indicated that
the proportion of humans responsive to vari-
ous antigens was as follows: 53.3% to
C. albicans; 75.5% to mumps, 43.5% to tri-
chophyton, 37.6% to PPD, 38.3% to TT,
and 20.4% to coccidioidin.

The multitest kit may not be suitable for
infants or preschool children. Newborns
under 6 weeks of age seldom have any DHR
response, with infants 6–12 months of age
having a high incidence of anergy (6.7%)
(59). Normal, immunized 1-year-old children
usually respond to at least one of the antigens
candida, diphtheria, and tetanus, but do not
respond to mumps, streptococcus, or tri-
chophyton. Seventy-three percent of children
6 weeks to 12 years of age tested with candida
and TT had at least one positive test (60). In
addition, 6.8% of healthy preschool children
are anergic, with a peak of 17% in the 3- to
4-year age group. The incidence of anergy is
decreased in older children. Knicker et al.
(58) found that none of 448 children 7–16

years of age were anergic. It should be noted
here that mean values obtained for a specific
population may vary from that of historical
controls. Therefore, it is important that each
study includes a nonexposed, age-matched
control group.

Cytotoxic cells. A number of blood cells,
including cytotoxic T lymphocytes, natural
killer (NK) cells, and mononuclear phagocytic
cells, are endowed with cytotoxic abilities and
are thus very efficient in immunosurveillance
mechanisms against neoplastic cells and viral
infection. Attention has been focused on the
NK cell because, like the macrophage/mono-
cyte lineage of cells, its role as the first line of
immune-mediated defense against viral and
bacterial infections has been conclusively
established. In immunocompromised hosts,
there is a correlation between low NK cell
activity and morbidity (61) or the incidence
and severity of upper respiratory infections
(62). Extreme susceptibility to herpes virus
infection was reported in an individual
without detectable NK cells (63).

NK cells are identified by the phenotype
CD3-CD16+ and/or CD56+ (64). NK cell
function is measured in a 4-hr 51chromium
(Cr)-release assay, whereby freshly isolated PB
leukocytes (effector cells) and 51Cr-labeled
K562 cells (target cell) are co-cultured, and
the release of label in culture supernatants is
quantified. At least three concentrations of
effector cells are added to a fixed number of
51Cr-labeled K562 target cells. The amount
of 51Cr released is directly proportional to the
level of NK cytotoxicity (64). Although the
number of circulating NK cells is small
(7–15% of circulating lymphocytes), they are
functionally very efficient cells, as, unlike
other cells whose function requires associa-
tion with the major histocompatibility com-
plex (MHC), NK cell action against certain
malignant and virus-infected cells is MHC-
unrestricted and nonspecific with respect to
the type of cell targeted (64). In addition, NK
cells produce numerous cytokines such as
tumor necrosis factors α and β, interferons α
and β, granulocyte-macrophage colony-stim-
ulating factor, and interleukin-3 upon
immune stimulation, all of which have a
profound effect on immune reactivity (64). 

Other Potentially Useful End Points
Thymic size. Chemical-induced toxicity of the
thymus characterized by thymic atrophy has
been observed with a number of environmen-
tal chemicals (65). TCDD, for example, tar-
gets the thymic reticular epithelium, resulting
in lymphocyte depletion (66). A decrease in
size or involution of the organ may thus be
the first manifestation of environmental
chemical-induced immunotoxicity and may
be a useful indicator of immunotoxicity in the
developing fetus following in utero exposure.

The recently published series of reports by
Hasselbalch and co-workers describes the
application of sonography to the measurement
of thymic size in preterm (born in weeks
24–32) infants and in term infants up to 24
months of age (67–70). The objective of this
work was to correlate the size of the thymus in
healthy infants with such clinical variables as
breast-feeding status and illness. This tech-
nique when further validated may be useful in
determining the effects of environmental
chemicals on the level of immunologic
maturity of the thymus in early childhood. 

Quantification of cell-surface antigens
and cytokines. Immune cells, normally in
the resting phase, upon exposure to
pathogens and chemicals become activated.
The transition from the “resting” to the acti-
vated phase is accompanied by the expres-
sion of cell-surface antigens and the release
of several cytokines (interleukins 1–12, inter-
feron-γ, tumor necrosis factor, granulocyte–
macrophage colony-stimulating factor, etc.)
in the body fluids including serum (71).
Agents such as viruses and chemicals,
including environmental contaminants, alter
the expression of cell-surface receptors and
the release of cytokines, resulting in adverse
effects on immune function. Therefore,
quantification of these cytokines following
activation of immune cells can generate use-
ful information regarding the mechanism of
action of environmental contaminants. 

Factors That May Affect 
the Immune Response
The design of epidemiologic immunotoxicity
studies is subject to the same rules that apply
to any other epidemiologic study designs
(72). However, unlike experimental animal
studies in which interanimal variability can be
minimized by using inbred animals that are
uniform in age, studies involving human
populations are subject to unavoidably large
intersubject variability. This genetically con-
trolled variability has obvious consequences
for the capacity of the immune system to rec-
ognize foreign antigens and will ultimately
influence the mechanism of chemical-
induced immunotoxicity. In addition, a
number of other factors may have an effect
on the immune response, and these need to
be taken into consideration in the design of
studies involving humans (see “General
Parameters of the Immune System”).

For example, the inability of the developing
fetus to recognize and react to a wide range of
foreign substances and its increased suscepti-
bility to long-term immunotoxic effects com-
pared to that in adults is well documented
(30,73). Changes observed in the thymus, the
site of T-lymphocyte maturation, including a
decline of serum thymic hormone activity
and accelerated involution of the organ, are
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age dependent (74,75). Increased frequencies
of autoantibodies to nucleic acids, smooth
muscle, mitochondria, lymphocytes, gastric
parietal cells, Ig, and thyroglobulin have been
well documented in older people (73).
Pregnancy is characterized by profound
changes in hormone levels that can have spe-
cific and nonspecific effects on the immune
system. A decrease in peripheral blood lym-
phocytes in early pregnancy has been
observed consistently (76).

Stress of various forms, including post-
operative states, can affect the immune sys-
tem. Because of the existing bidirectional
pathways among the immune, endocrine, and
neuronal systems, stress can have an effect on
these systems. Changes in glucocorticoid lev-
els are frequently cited as a result of this inter-
action (77). Fluctuations in WBC counts
occur with glucocorticoid as a result of
changes in hormone levels in the blood (77).
Overall, stress has an immunosuppressive
effect, causing changes in several functional
aspects of the immune system.

Several other factors, including smoking
and the use of nonprescription drugs, can also
have profound effects on the immune system.
Smoking, for example, causes a reduction in
leukocyte counts (78,79), and nonprescrip-
tion drugs such as aspirin can have a range of
nonspecific immunologic effects, including
inhibition of lymphocyte responses to mito-
gens and depression of neutrophil function
(80). In view of the documented sensitivity of
the immune system to a host of factors, basic
considerations such as those listed below
must be taken into account when designing
human immunotoxicity studies: 
• ensure that a set of selection procedures

and adequate documentation of the study
subjects are available

• ensure that the test and control popula-
tions are comparable in age, sex, socio-
economic factors, etc.

• ensure that the chemical(s) the study
subjects are exposed to are adequately
documented

• ensure that other factors, such as the pres-
ence of disease, especially HIV infection,
or the use of medication that may influ-
ence the immune system, have been
accounted for

• ensure that immunologic tests used to
measure immune function are clinically
relevant and validated

• ensure that levels (blood/fat) of the chem-
ical(s) in question are available 

Evidence for Chemical-Induced
Immunomodulation 
in Human Studies 
The limited data obtained from human
epidemiologic studies suggest that the
human immune system may be targeted by

environmental contaminants (17). The
available data are derived predominantly
from monitoring humans exposed to a vari-
ety of chemicals in the workplace (occupa-
tional) or from cross-sectional studies in
humans accidentally exposed to specific
chemicals such as PCBs and dioxins.
Furthermore, only a limited number of
immunologic end points have been investi-
gated in the majority of the documented
studies. Given these limitations, available
data regarding immune alterations associated
with exposure to a variety of chemicals must
be interpreted with caution. 

Effects on the immune system have been
reported in the Japanese (Yusho) and
Taiwanese (Yu-Cheng) populations exposed
accidentally to PCBs [Kanechlors (KC) 400
and 500], polychlorinated dibenzofurans, and
quaterphenyls following the ingestion of con-
taminated rice oil (81,82). These findings
indicated a compromised immune system in
the exposed populations and were character-
ized by significant effects on both humoral
and cellular aspects of immunity. 

The Yusho patients exhibited a decrease
in total serum IgA and IgM in the first year
after the outbreak and a high frequency of
respiratory infections (83,84). Similarly, the
Yu-Cheng patients exhibited decreased total
serum IgA and IgM, reduced T lymphocytes
and T-helper/inducer cells, and reduced
monocyte and polymorphonuclear leukocytes
after 1 year of exposure (85). The incidence
of positive skin reactivity to streptokinase/
streptodornase (SK/SD) antigen mixture and
to PPD antigens tested at 1 (SK/SD) and
4 years (PPD) after exposure was significantly
lower in the Yu-Cheng patients than in con-
trols (86). Of clinical significance is the obser-
vation that the percentage of patients
showing a skin test response, as well as the
size of the response, decreased with increased
severity of the clinically observed PCB-
induced dermal lesions and with increased
PCB concentrations in whole blood (86).
Yu-Cheng children had a higher frequency of
bronchitis and influenza attacks at 6 months
of age and a higher frequency of respiratory
attacks and ear infections at 6 years of age,
suggesting that their humoral immunity was
compromised (87). 

A higher incidence of colds and gastro-
intestinal (vomiting, abdominal pain) and
dermatologic (eczema, itchy skin) manifesta-
tions were also observed in breast-fed infants
born to women occupationally exposed to the
KC-500 (chlorine content, 55%) and
KC-300 (chlorine content, 43%) compared
with infants born to nonexposed women.
The incidence of these symptoms increased
with increasing length of breast-feeding (88). 

Epidemiologic studies of women who
consumed contaminated fish from the Great

Lakes indicated that the maternal serum PCB
level during pregnancy was positively associ-
ated with the number and type of infectious
illnesses suffered by the breast-fed infant, espe-
cially during the first 4 months of life during
which maturation of the immune system is
critical to the infant’s health. The incidence of
infections in the infant correlated strongly
with the highest rate of maternal fish con-
sumption and maternal blood PCB levels,
suggesting that the observed changes to micro-
bial resistance was induced by PCBs (89,90).

Shifts in T-lymphocyte subsets similar to
those observed in experimental animals have
also been noted in the infants of Inuit people
in northern Quebec, Canada (91). A recent
study by the same investigators reported that
the incidence of otitis media was similar in
both breast-fed and bottle-fed Inuit children
but higher relative to that in other children
residing in the southern Quebec area (92).
Although no correlation was found between
the incidence of otitis media in the Inuit chil-
dren and maternal blood PCB concentra-
tions, there was a significant correlation with
levels of 1,1,1-trichloro-2,2-bis(p-chloro-
phenyl)ethylene (DDE) and hexachlor-
benzene (92). The incidence of otitis media
was also reported to be higher in breast-fed
than in bottle-fed infants in a recent study by
Weisglas-Kuperus (93).

Weisglas-Kuperus et al. (93–95) investi-
gated the effects of ambient levels of PCBs
and dioxins on the immune system of breast-
fed versus bottle-fed children in The
Netherlands. A number of significant obser-
vations were made in the mother–infant pairs
of breast-fed versus bottle-fed infants. These
clearly indicated that humoral aspects of the
infants’ immune system were compromised.
In addition, this study indicated that the
observed effects might be due to exposure of
the infants to PCBs and other contaminants,
including TCDD, in utero or via breast milk.
Similarly, children exposed to TCDD follow-
ing an explosion at a herbicide factory in
Seveso, Italy, were reported to have increased
peripheral blood lymphoproliferative
responses to mitogens 6 years after the explo-
sion (96). A positive correlation between
increased serum complement levels and the
incidence of chloracne was noted in the same
children (97). Similarly, positive correlations
between increased levels of circulating T lym-
phocytes and adipose tissue TCDD levels
were reported in 41 persons from Missouri,
USA. TCDD levels in adipose tissue were the
net result of occupational, recreational, or res-
idential exposure. Serum IgA levels were
increased in the exposed individuals
compared to control (98). 

Several organophosphate and organo-
chlorine pesticides are known to affect the
immune system (99,100). Altered levels of
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serum Ig were observed in workers exposed to
a combination of four organophosphate and
organochlorine pesticides (malathion,
parathion, DDT, and hexachlorocyclo-
hexane) (101). Similarly, increases in serum
IgG but decreases in serum IgM and comple-
ment C3 were reported in a study of 51 men
exposed to chlorinated pesticides, compared
to a control group (102). The clinical signifi-
cance of the observed shifts in Ig and comple-
ment levels is not clear, as other relevant end
points were not investigated. Impairment of
neutrophil chemotaxis was reported for work-
ers occupationally exposed to organophos-
phate pesticides compared to controls (103).
The incidence of respiratory infections in the
exposed workers was increased compared to
the control.

A recent study of subjects living near the
Aberdeen Pesticides Dumps Site in Aberdeen,
North Carolina, reported an association with
altered levels of certain immune markers,
which were correlated with plasma DDE
levels (104). Specifically, a greater number of
Aberdeen residents had a low percentage of
NK cells, increased IgM levels, and decreased
lymphoproliferative responses to mitogens
compared to residents of the comparison
areas. Younger Aberdeen residents (18–40
years of age) and residents who lived in
Aberdeen prior to 1985 when the pesticide
plants were in operation had a 2- to 3-fold
increased risk for developing herpes zoster
(shingles) compared to residents of nearby
communities (104). 

Data derived from cohorts suggested that
lead (Pb), mercury (Hg), and cadmium (Cd)
may affect the immune system (105). The
effects of Pb and Cd were predominantly on
cellular aspects of the immune system
(106–109), with humoral parameters remain-
ing relatively insensitive (110). Conversely,
exposure to Hg resulted in significant shifts in
circulating total lymphocytes and their
subsets (111) and Ig levels (112,113).

Finally, the possible association between
immunotoxicity caused by environmental
chemicals and the development of cancer is
not well understood. Studies based on data
derived from company and municipal death
records suggest an association between occu-
pational exposure to known immuno-
toxicants present in grain mills and higher
incidence of neoplasms in the hemopoietic
and lymphatic tissues (99,100). Similarly, an
increase in the incidence of myeloid
leukemias occurred among pesticide workers
in Florida (114). A review of epidemiologic
studies of humans exposed to pesticides per-
formed from 1975 to 1991 revealed an
increased risk of myeloproliferative disorders
associated with exposure among manufactur-
ers, applicators, and farmers (115). The
recently published reports on areas of concern

in the Great Lakes region (1,2) document the
existence of a number of cancers of the lym-
phatic and hematopoietic system, such as
non-Hodgkin lymphoma, Hodgkin lym-
phoma, and leukemia, for the Windsor area.
The results summarized by Gilbertson (116)
indicated that there was more than a 2-fold
higher (226%) incidence rate for mortality
from Hodgkin disease in females. The rates of
morbidity from leukemia were significantly
elevated in both males (33% higher) and
females (44% higher) 45–74 years of age com-
pared with the rates in the rest of the
province. The incidence for acute respiratory
infections, other diseases of the upper respira-
tory tract, pneumonia, influenza, and chronic
obstructive pulmonary diseases including
chronic bronchitis, emphysema, and asthma
was significantly elevated in the Windsor area
compared to the provincial rates and those of
Hamilton, Ontario (116). These results indi-
cate that immunosurveillance mechanisms
responsible for the elimination of neoplastic
cells may be compromised.

Concluding Remarks

A number of immunologic schemes have been
proposed for application to the study of
chemical-induced immunosuppression in
human cohorts. The majority of the proposed
end points, including determination of the
total serum Ig classes and subclasses, quantifi-
cation of peripheral blood leukocytes and
T-lymphocyte subsets, the lymphoprolifera-
tive activity of peripheral blood leukocytes in
response to mitogens, NK cell activity, and
monocyte function can easily be investigated
in in vitro systems using peripheral blood
from humans known to be exposed to envi-
ronmental contaminants, and are therefore
noninvasive in nature. Others, such as the
delayed-type hypersensitivity response to recall
antigens, require intradermal injection of anti-
gens and should be performed under medical
supervision. The ultimate choice of end points
to be investigated will depend largely on the
age of the cohort. For example, in preschool-
age children, data on the antibody response
to antigens commonly used for vaccination
and delayed-type hypersensitivity responses
combined with data on the incidence of
microbial infections, would be useful in
determining whether the immune system is
compromised relative to age- and sex-matched
unexposed controls. In adults, determination
of antibody production in response to specific
antigens such as bacteriophage, KLH, TT,
and hepatitis B vaccine would be desirable. 

A number of the above-mentioned end
points have been investigated in humans
exposed to a number of environmental con-
taminants. The resulting data suggest that
the human immune system is vulnerable to
the immunotoxic effects of environmental

contaminants and may have detrimental
health effects. Therefore, investigators should
be encouraged to incorporate a set of clini-
cally valid end points into all future epidemi-
ologic studies of cohorts known to be
exposed to environmental contaminants.
Guidelines already established for the design
of epidemiologic studies in general (105) also
apply to the design of immunotoxicity
studies in human cohorts. In addition, sev-
eral confounding factors known to affect the
immune system must be considered in the
statistical evaluation of all immunologic
studies. For example, the presence of undiag-
nosed HIV infection, even in a small propor-
tion of individuals included in a study
population, may significantly affect the results
and, consequently, the interpretation of data. 

Finally, it should be emphasized that the
normal immune system has a broad spectrum
of reactivity and a great deal of reserve capac-
ity. Consequently, the presence of a statisti-
cally valid correlation between the blood/
adipose tissue levels of the chemicals investi-
gated and the presence of clinically relevant
outcomes should be investigated. Only then
can one conclude with considerable certainty
that the observed adverse immunologic effects
occur as a result of exposure to the
chemical(s) in question.
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